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[bookmark: _kd6mrbn5vor7]1. Service Security

List of critical validations to ensure that service endpoints follow necessary conventions and security controls are correctly defined and enforced.


	[bookmark: _taexsbgwxvf4]1.1 JWT Validation

	Analysis:

Service either uses JWT Security Library to enforce security or manually verifies:
· JWT issuer is gov.va.vamf.users.v1
· JWT is signed by user service JWT public key
· JWT public key is a 512-bit RSA public key (production)
· Verifies that nbf and exp temporal constraints are satisfied
· Verifies that JWT signing algorithm is exclusively RS512 (production)

	Findings:

  


 
 
	[bookmark: _tr8hygsdfr]1.2 Veteran PHI/PII Endpoints 

	Analysis: 
· All non-public endpoints are protected via JWT
· Veteran users restricted to self-service access only
· Anonymous and admin users cannot access any user PHI/PII data
· RBAC on veteran role is not misused to enforce self-service use cases


	Findings:




  
	[bookmark: _rti1tzerhip5]1.3 Staff-Specific Endpoints

	Analysis:
· Anonymous, veteran, or admin users cannot access staff-specific endpoints
· Staff users are restricted from accessing other providers information except for directory/lookup-related use cases


	Findings:




 
	[bookmark: _rakek3vxbbu0]1.4 Service Endpoint Design

	Analysis:
· Service uses a base path of /{service-name}/v{major}
· Service does not allow for multiple patient or staff IDs to be specified within the URL path
· Service verifies that resources addressable by ID are associated with the appropriate owner (Insecure Direct Object Reference)
· e.g. Accessing /patients/{123}/orders/{456} enforces that order ID 456 belongs to patient 123


	Findings:
· 


 
	[bookmark: _bf0l8j921ngw]1.5 System Endpoints

	Analysis:
· System health checks are provided at /{base-path}/system/health
· Health checks verify connectivity to all direct service dependencies
· Anonymous, veteran, or staff users cannot access system endpoints


	Findings:
· 




 


[bookmark: _gx6ihza30v86]2. Service Design
Verification that the service is designed to run and scale properly on the VA Mobile application platform.

	[bookmark: _rf105wheh4in]2.1 Context and State Management

	Analysis:
· Service does not maintain server-side state in HTTP sessions or similar server-side mechanisms
· Service propagates JWTs as appropriate to downstream services used to fulfill requests
· If the Jersey implementation of javax.ws.rs.client.Client is used, it must be configured to override the default (infinite) timeouts.


	Findings:





	[bookmark: _s5faqg2prsc3]2.2 Data Handling

	Analysis:
· Service does not assume data fields are be present without validation
· Service does not execute or render data unvalidated data from untrusted sources
· Service should not assume timezones when timezone data is available
· Service should avoid legacy date APIs (java.util.Date and java.util.Calendar java.util.SimpleDateFormat).

	Findings:






[bookmark: _gfwch6n7riy7]3. Code Repository
Verification that the service codebase and repository adhere to the VA Mobile application requirements and best practices.
 

	[bookmark: _uhg4d99cednv]3.1 Separation of Components

	Analysis:
· Service codebase is limited to a single deployable component
· Any libraries or other build-time dependencies are managed in a separate git repository


	Findings:
· 




	[bookmark: _n5k9z0ujtwm]3.2 Required Artifacts

	Analysis:
· Swagger document
· Dockerfile and related runtime scripts


	Findings:
·  




	[bookmark: _1uaedkqnami7]3.3 Organization and Packages

	Analysis:
· Code uses appropriate `gov.va.*` package names
· Package includes major version in package (e.g. gov.va.vamf.service.v1)


	Findings:
· 




[bookmark: _r2p2819cepud]4. Documentation
Verification that the basic documentation has been provided and is reasonably accurate.
 

	[bookmark: _o4qdd0wbllau]4.1 System Design Document

	Analysis:
· Provides a description of the function of the app/service
· Lists service dependencies and minimum required version
· Includes at least one sequence diagram illustrating interaction between dependencies
· Lists all relevant environment variables


	Findings:
· 




	[bookmark: _o0wuedw7kkx4]4.2 Readme Document

	Analysis:
· Defined at the root of the repository (/readme.md or /README.md)
· Includes installation instructions
· Lists service dependencies and minimum required version
· Lists required and optional environment variables


	Findings:
· 




	[bookmark: _l08rgyxpe3it]4.3 Swagger Document

	Analysis:
· OpenAPI/Swagger service contract is included in the repository
· Service returns the current contract at runtime from the base path/URL
· All available REST endpoints are included
· All supported HTTP verbs/operations are enumerated correctly
· All date parameters specify a date or date-time formats.


	Findings:
· 





[bookmark: _s7rnoahetw5o]5. Build
Verification that the build of the component can be easily reproduced and any significant test anomalies result in appropriate failures.


	[bookmark: _o94y1hqoaxwt]5.1 Reproducibility

	Analysis:
· Component can easily be built and tested locally
· Build works without specific pre-provisioning or configuration steps 
· Only prerequisites are access to VA Nexus and Innovations DTR
· Unit tests run by default during build
· Failing tests result in a build failure


	Findings:
· 


 

[bookmark: _p90x02n8pp2z]6. Dependencies
Verify that the dependencies are properly updated and managed through an approved repository.


	[bookmark: _cixoyrnef541]6.1 Dependency Management

	Analysis:
· Dependencies and related versions are defined and managed by a standard package/dependency management framework (e.g. Maven, NPM)
· All dependencies are retrieved and managed from the VA Nexus repository; no local libraries or binaries are checked into the repository


	Findings:
· 





	[bookmark: _pi7hffl5y8tg]6.2 Dependency Use and Scopes

	Analysis:
· Build does not include unused or unnecessary dependencies
· Dependencies are updated to use the latest stable build
· Dependencies are scoped to the appropriate use by the project
· Test, compile, runtime, etc
· No test dependencies are include in the final build

	Findings:
· 




[bookmark: _gnrzyyc665te]7. Testing Structure
Verify that the service has both unit and integration tests that are meaningful and can be easily reproduced.


	[bookmark: _bqclixcowtqd]7.1 Unit Tests

	Analysis:
· Unit tests are defined for appropriate business logic
· Runs successfully without external dependencies

	Findings:
· 




	[bookmark: _4oofsdamvcob]7.2 Integration Tests

	Analysis:
· Integration tests provide coverage of primary API functionality
· Tests aligned with swagger contract
· Integration tests are defined and can run in an automated fashion
· Integration test run against the Docker container
· Integration tests cover happy path and negative test cases.
· Negative JWT access tests should exercise RBAC and Resource based restrictions.


	Findings:
· 



[bookmark: _5merzcjnv8g2]8. Infrastructure 
Verify that the service has the correct components to successfully build in the AWS environment


	[bookmark: _4d9pelgq4m8i]8.1 Jenkinsfiles

	Analysis:
· A Jenkinsfile exists
· The Jenkinsfile contains the required components to successfully build in a kubernetes cluster
· If a Jenkinsfile doesn’t exist, provide guidance on developing a Jenkinsfile based on how the projects build scripts and how can it be translated to function in a Jenkinsfile

	Findings:
· 




	[bookmark: _5gpt8d71z9v5]8.2 Kubernetes Artifacts

	Analysis:
· Kubernetes files exist in the ./kubernetes folder at the root of the project
· Kubernetes files contain the required components (resource limits, readiness probe, liveness probe, environment variables)
· Security readiness (ClusterIP should be used instead of NodePort)
· For non-trivial services, the readiness probe should check that the service is ready to handle requests.
· Ensure the environment variable pattern of $ENV_VAR is used for:
· $NAMESPACE
· $VAMF_ENVIRONMENT
· $DTR_URL
· $SERVICE_VERSION
· $IMAGE_PULL_SECRET
· If no kubernetes files are defined, provide guidance for how to create the manifest files.


	Findings:
· 



[bookmark: _egu4ohtv968r]

