
Project:

Repository:
Branch:
Commit:

1. Service Security
1.1 JWT Validation
1.2 Veteran PHI/PII Endpoints
1.3 Staff-Specific Endpoints
1.4 Service Endpoint Design
1.5 System Endpoints
2. Service Design
2.1 Context and State Management
2.2 Data Handling
3. Code Repository
3.1 Separation of Components
3.2 Required Artifacts
3.3 Organization and Packages
4. Documentation
4.1 System Design Document
4.2 Readme Document
4.3 Swagger Document
5. Build
5.1 Reproducibility
6. Dependencies
6.1 Dependency Management
6.2 Dependency Use and Scopes
7. Testing Structure
7.1 Unit Tests
7.2 Integration Tests
8. Infrastructure
8.1 Jenkinsfiles
8.2 Kubernetes Artifacts
[bookmark: _vr36xq12qerx]
[bookmark: _kd6mrbn5vor7]1. Service Security

List of critical validations to ensure that service endpoints follow necessary conventions and security controls are correctly defined and enforced.

	[bookmark: _taexsbgwxvf4]1.1 JWT Validation

	Analysis:

Service either uses JWT Security Library to enforce security or manually verifies:
· JWT issuer is gov.va.vamf.users.v1
· JWT is signed by user service JWT public key
· JWT public key is a 512-bit RSA public key (production)
· Verifies that nbf and exp temporal constraints are satisfied
· Verifies that JWT signing algorithm is exclusively RS512 (production)

	Findings:

	[bookmark: _tr8hygsdfr]1.2 Veteran PHI/PII Endpoints

	Analysis:
· All non-public endpoints are protected via JWT
· Veteran users restricted to self-service access only
· Anonymous and admin users cannot access any user PHI/PII data
· RBAC on veteran role is not misused to enforce self-service use cases

	Findings:

	[bookmark: _rti1tzerhip5]1.3 Staff-Specific Endpoints

	Analysis:
· Anonymous, veteran, or admin users cannot access staff-specific endpoints
· Staff users are restricted from accessing other providers information except for directory/lookup-related use cases

	Findings:

	[bookmark: _rakek3vxbbu0]1.4 Service Endpoint Design

	Analysis:
· Service uses a base path of /{service-name}/v{major}
· Service does not allow for multiple patient or staff IDs to be specified within the URL path
· Service verifies that resources addressable by ID are associated with the appropriate owner (Insecure Direct Object Reference)
· e.g. Accessing /patients/{123}/orders/{456} enforces that order ID 456 belongs to patient 123

	Findings:
·

	[bookmark: _bf0l8j921ngw]1.5 System Endpoints

	Analysis:
· System health checks are provided at /{base-path}/system/health
· Health checks verify connectivity to all direct service dependencies
· Anonymous, veteran, or staff users cannot access system endpoints

	Findings:
·

[bookmark: _gx6ihza30v86]2. Service Design
Verification that the service is designed to run and scale properly on the VA Mobile application platform.

	[bookmark: _rf105wheh4in]2.1 Context and State Management

	Analysis:
· Service does not maintain server-side state in HTTP sessions or similar server-side mechanisms
· Service propagates JWTs as appropriate to downstream services used to fulfill requests
· If the Jersey implementation of javax.ws.rs.client.Client is used, it must be configured to override the default (infinite) timeouts.

	Findings:

	[bookmark: _s5faqg2prsc3]2.2 Data Handling

	Analysis:
· Service does not assume data fields are be present without validation
· Service does not execute or render data unvalidated data from untrusted sources
· Service should not assume timezones when timezone data is available
· Service should avoid legacy date APIs (java.util.Date and java.util.Calendar java.util.SimpleDateFormat).

	Findings:

[bookmark: _gfwch6n7riy7]3. Code Repository
Verification that the service codebase and repository adhere to the VA Mobile application requirements and best practices.

	[bookmark: _uhg4d99cednv]3.1 Separation of Components

	Analysis:
· Service codebase is limited to a single deployable component
· Any libraries or other build-time dependencies are managed in a separate git repository

	Findings:
·

	[bookmark: _n5k9z0ujtwm]3.2 Required Artifacts

	Analysis:
· Swagger document
· Dockerfile and related runtime scripts

	Findings:
·

	[bookmark: _1uaedkqnami7]3.3 Organization and Packages

	Analysis:
· Code uses appropriate `gov.va.*` package names
· Package includes major version in package (e.g. gov.va.vamf.service.v1)

	Findings:
·

[bookmark: _r2p2819cepud]4. Documentation
Verification that the basic documentation has been provided and is reasonably accurate.

	[bookmark: _o4qdd0wbllau]4.1 System Design Document

	Analysis:
· Provides a description of the function of the app/service
· Lists service dependencies and minimum required version
· Includes at least one sequence diagram illustrating interaction between dependencies
· Lists all relevant environment variables

	Findings:
·

	[bookmark: _o0wuedw7kkx4]4.2 Readme Document

	Analysis:
· Defined at the root of the repository (/readme.md or /README.md)
· Includes installation instructions
· Lists service dependencies and minimum required version
· Lists required and optional environment variables

	Findings:
·

	[bookmark: _l08rgyxpe3it]4.3 Swagger Document

	Analysis:
· OpenAPI/Swagger service contract is included in the repository
· Service returns the current contract at runtime from the base path/URL
· All available REST endpoints are included
· All supported HTTP verbs/operations are enumerated correctly
· All date parameters specify a date or date-time formats.

	Findings:
·

[bookmark: _s7rnoahetw5o]5. Build
Verification that the build of the component can be easily reproduced and any significant test anomalies result in appropriate failures.

	[bookmark: _o94y1hqoaxwt]5.1 Reproducibility

	Analysis:
· Component can easily be built and tested locally
· Build works without specific pre-provisioning or configuration steps
· Only prerequisites are access to VA Nexus and Innovations DTR
· Unit tests run by default during build
· Failing tests result in a build failure

	Findings:
·

[bookmark: _p90x02n8pp2z]6. Dependencies
Verify that the dependencies are properly updated and managed through an approved repository.

	[bookmark: _cixoyrnef541]6.1 Dependency Management

	Analysis:
· Dependencies and related versions are defined and managed by a standard package/dependency management framework (e.g. Maven, NPM)
· All dependencies are retrieved and managed from the VA Nexus repository; no local libraries or binaries are checked into the repository

	Findings:
·

	[bookmark: _pi7hffl5y8tg]6.2 Dependency Use and Scopes

	Analysis:
· Build does not include unused or unnecessary dependencies
· Dependencies are updated to use the latest stable build
· Dependencies are scoped to the appropriate use by the project
· Test, compile, runtime, etc
· No test dependencies are include in the final build

	Findings:
·

[bookmark: _gnrzyyc665te]7. Testing Structure
Verify that the service has both unit and integration tests that are meaningful and can be easily reproduced.

	[bookmark: _bqclixcowtqd]7.1 Unit Tests

	Analysis:
· Unit tests are defined for appropriate business logic
· Runs successfully without external dependencies

	Findings:
·

	[bookmark: _4oofsdamvcob]7.2 Integration Tests

	Analysis:
· Integration tests provide coverage of primary API functionality
· Tests aligned with swagger contract
· Integration tests are defined and can run in an automated fashion
· Integration test run against the Docker container
· Integration tests cover happy path and negative test cases.
· Negative JWT access tests should exercise RBAC and Resource based restrictions.

	Findings:
·

[bookmark: _5merzcjnv8g2]8. Infrastructure
Verify that the service has the correct components to successfully build in the AWS environment

	[bookmark: _4d9pelgq4m8i]8.1 Jenkinsfiles

	Analysis:
· A Jenkinsfile exists
· The Jenkinsfile contains the required components to successfully build in a kubernetes cluster
· If a Jenkinsfile doesn’t exist, provide guidance on developing a Jenkinsfile based on how the projects build scripts and how can it be translated to function in a Jenkinsfile

	Findings:
·

	[bookmark: _5gpt8d71z9v5]8.2 Kubernetes Artifacts

	Analysis:
· Kubernetes files exist in the ./kubernetes folder at the root of the project
· Kubernetes files contain the required components (resource limits, readiness probe, liveness probe, environment variables)
· Security readiness (ClusterIP should be used instead of NodePort)
· For non-trivial services, the readiness probe should check that the service is ready to handle requests.
· Ensure the environment variable pattern of $ENV_VAR is used for:
· $NAMESPACE
· $VAMF_ENVIRONMENT
· $DTR_URL
· $SERVICE_VERSION
· $IMAGE_PULL_SECRET
· If no kubernetes files are defined, provide guidance for how to create the manifest files.

	Findings:
·

[bookmark: _egu4ohtv968r]

